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F
uture NASA space-based astrophysics missions 
require high angular resolution imagery at wave-
lengths spanning the ultraviolet, visible, and in-
frared spectrums. However, achieving the required 

resolution is neither practical nor cost-eff ective with a 
single aperture. For example, a resolution similar to that 
of the Hubble space telescope’s in the far infrared requires 
a single aperture telescope on the order of 1 km in diam-
eter.1 In contrast, multiple apertures combined with in-
terferometry techniques2 enable high-resolution data in a 
cost-eff ective manner. Similarly, in Earth sciences, mul-
tiple small radar apertures or a moving aperture can pro-
duce the eff ect of one large antenna, synthetically.3

Finding the optimal number of apertures and geometric 
confi gurations for the required spatial and spectral resolu-
tion in the minimal collecting area is of paramount impor-
tance—it drives telescope mass, volume, and complexity, 
and hence has a large eff ect on mission costs. Th is is the 
motivation behind this case study. Th e desired location 
of such apertures and antennas to maximize the return of 
nonredundant information is directly related to marks on 
Golomb rulers, or Golomb rectangles, mathematical concepts 
that we’ll learn about here. Radio astronomers have a long 
history of using such nonredundant aperture patterns.4−6

golomb rulers
Let’s consider an offi  ce ruler that has marks at locations 0, 1, 
2, ..., 30 centimeters.

Question 1

What is the length of your ruler? How many (major) marks does 
it have? What are the pairwise distances of these major marks on 
your ruler? How many ways can you measure the same distance 
(for example, distances of 1-unit, 2-units, ..., L-units length)?

A typical ruler is marked at equal distances of a unit 
length (every inch or centimeter), and many of these marks 
share the same pairwise distances among them—pairwise 
distances of all consecutive marks are a unit long, pairwise 
distances of every other mark are two units long, and so on. 
Th erefore, to measure a distance d < l, you can use several 
diff erent pairs of marks on the ruler. To measure a 4-cm 
interval using a 30-cm ruler marked at 1-cm intervals, for 
instance, you have several options—you can use the dis-
tance between marks labeled 0 and 4, 1 and 5, 10 and 14, 
and so on.

Question 2

Consider a ruler of 11 units long that’s marked at loca-
tions 0, 1, 4, 9, and 11. What are the pairwise distances 
between its marks? How many different ways can you 
measure distances of 1-unit, 2-units,..., 11-units long us-
ing this ruler?

The ruler you worked with in Question 2 is an 
example of a Golomb ruler.7 A Golomb ruler’s main 
property is that the distance between any pair of its 
marks is distinct.8 In other words, if you can measure 
an integer distance of d units with this ruler, there 
should be only one way of making this measurement 
with your ruler—if indeed that ruler is a Golomb 
ruler.

More formally, a Golomb ruler consists of a set of inte-
gers A = {a1, a2, . . . , an}, where a1 < a2 < . . . < an, such that 
for each nonzero integer x, there is at most one solution to 
the equation x = aj − ai, ai, aj ∈ A. Th e set of integers, 
A, represents positions of n marks on a ruler with integer 
length L = an − a1. For this case study, we consider a1 = 0 
and L = an.
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Question 3

What is the number of pairwise distances among 
marks of a ruler with n marks? 

There are dif ferent ways to represent a 
Golomb ruler. One is to use a length l + 1 ar-
ray of zeros and ones, with cells corresponding 
to marks containing value one and other cells 
storing zero. Another representation would be a 
graph whose nodes are labeled with distinct non-
negative integers (ruler marks) and whose edges 
are labeled with the pairwise distances of their 
connecting node values. Figure 1 displays these 
two representations for a ruler of length 6 with 
marks at positions {0, 1, 4, 6}. Th e Golomb ruler 
is also directly related to the concept of the Sidon 
sets, which are sets of natural numbers with dis-
tinct pairwise sums.9

Th e remainder of this case study considers the 
array representation of Golomb rulers, with cells at the 
mark locations represented with value one and zero 
otherwise. Th e Golomb ruler problem has variants 
such as Golomb rectangles,10,11 Costas arrays,12,13 and 
Honeycomb arrays14 in 2D space, but we focus only 
on Golomb rulers here.

Computational Complexity and Construction 
Algorithms 
A Golomb ruler is optimal if no shorter Golomb 
ruler with the same number of marks can be 
formed. Furthermore, if a ll integer distances 
{1, 2, ..., l} can be measured with a Golomb ruler 
of length l, you have a perfect Golomb ruler. Th e 
graph representation of a perfect Golomb ruler is 
a graceful graph,7 one with n nodes such that each 
node is labeled with distinct nonnegative numbers 
no larger than n in a way that each edge is assigned 
exactly one of the integers from 1 to n.

Question 4

What are the distances that a perfect Golomb ruler 
covers in terms of n, the number of marks on the 
ruler? What is the length of the ruler, l, in terms of n? 

Question 5

Consider the Golomb ruler in Question 2. Is it a per-
fect Golomb ruler? How about an optimal one? Why or 
why not for each case? How about the ruler in Figure 1?

Question 6

Prove � eorem 1: there is no perfect Golomb ruler 
with more than four marks.7

Hint 1: Suppose there’s a perfect ruler of length 
L with n > 4 marks.

Hint 2: How can you mark the ruler so that 
distance of L − 1 is measured? How many marks 
does your ruler have so far?

Hint 3: Repeat the above exercise for distances 
of L − 2 and L − 3.

Now that we know there’s no perfect Golomb ruler 
with more than four marks, the goal is to fi nd optimal 
rulers. Finding optimal Golomb rulers is conjectured 
to be an NP-hard problem (see the sidebar), although 
there’s no formal proof for it. Th ere has been some 
work into fi nding the lower bounds of the solutions 
to this problem.15,16 Th e next question helps us better 
understand the computational complexity involved.

Figure 1. Two representations of a Golomb ruler of 
length 6 with marks at locations 0, 1, 4, and 6: (a) A 
one-dimensional array and (b) graph.
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What Is an NP-Hard Problem?

Suppose you are given a problem, such that its solution is a Boolean 

value: yes or no (or true or false). Such a problem is called a decision 
problem. There are different classes of decision problems; the set that can be 

solved in polynomial time (time that’s a polynomial function of the size of the 

input) is called P. There are other decision problems that we might or might 

not be able to solve in polynomial time, but given an answer, we can verify its 

correctness in polynomial time. These problems belong to a class of problems 

called NP. It’s easy to see P is a subset of NP. A problem is NP-hard if an 

algorithm for solving it could be translated in polynomial time into a method 

for solving any other NP-problem. An NP-hard problem may or may not be 

verifi able in polynomial time, and it has no known polynomial time algorithm 

for solving it. (See http://mathworld.wolfram.com/NP-Problem.html for more.)
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Question 7

Consider a ruler of length l. How many different 
ways can we mark this ruler at integer positions? 
How many different rulers of maximum length l 
will have exactly n marks? How many distances 
should be calculated for each such ruler to check 
for nonredundancy of measurements? Consider 
a Golomb ruler of maximum length 30 with 12 
marks. How long does it take to exhaustively 
search for the shortest of such Golomb rulers, if 
each measurement and test takes only one nano-
second (10−9 seconds)? If needed, convert the total 
search time to minutes, hours, or larger units of 
time.

The computational time for finding optimal 
Golomb rulers grows exponentially—for example, 
nonheuristic exhaustive search time for a Golomb 
ruler with 16 marks and of length 49 is 3.92 × 109 
years.17 Therefore, construction algorithms that 
generate rulers based on properties of prime num-
bers are of great value. Even if these construction 
algorithms don’t provide an optimal solution, they 
can serve as good initial guesses to our optimiza-
tion problem. For many applications, having such 
nonredundant patterns suffice. One of these con-
struction algorithms is the Erdös-Turán construc-
tion:18,19 for every odd prime number p, and for  
every k ∈ {0, 1, ..., p − 1} the sequence formed by 
2pk + (k2 mod p) is a Golomb ruler. Other con-
struction algorithms include Golomb, Lempel, Ru-
zsa, and Singer, which you can learn about.8,12,20

Question 8

Consider p = 11. What sequence does the Erdös-
Turán construction return? Verify that this se-
quence represents location of marks on a Golomb 
ruler. What is the running time of this construc-
tion for arbitrary p?

Seeing through Golomb Rulers
At this point, you should have a good understand-
ing of the mathematical concept and properties of 
Golomb patterns. Let’s learn about an application 
of this concept for astrophysicists as well as Earth 
scientists who benefit from measurements obtained 
from multiple apertures. To demonstrate this ap-
plication, we experiment with an image obtained 
from the Hubble Space Telescope as our true sky 

image, and see how it would be observed via em-
ploying different apertures.

Activity 1

Read and display the image tit1ed “hubble.tiff” 
from http://encompass.gsfc.nasa.gov/data.html. 
We call this image A. What are the dimensions of A?

Hint: You can use the Matlab routine called 
imread or implement its equivalent for reading .tiff 
files.

Activity 2

Consider matrix B with the same dimensions as 
A, whose cell values are initialized to zero. Place 
a circular aperture of radius 5 units at the center 
of B. Update B so that the cells representing the 
aperture location have value 1. Display and save 
grid B.

Hint 1: If B is of size N × N, the center of circle 

should be located at 
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Hint 2: Use the definition of a circle and the 
location of the circle’s center to determine which 
cells in B should have value 1.

Activity 3

Perform the below-mentioned computations to de-
rive how image A is observed via the aperture rep-
resented in grid B. Let fft2 and ifft2 represent 
Matlab’s 2D forward and inverse fast Fourier trans-
form functions, respectively. You can use these two 
routines or their equivalents for calculating 2D Fou-
rier transforms in this activity.

1. �Calculate the 2D Fourier transform of A. Save 
the results in 2D_FFT_A.

Hint: Make sure the zero frequency item is at 
the center of the matrix by applying Matlab’s fft-
shift function or its equivalent.

2D_FFT_A = fftshift(fft2(A))

2. �Calculate the 2D modulus square of the Fourier 
transform of grid B, aperture space. Call this im-
age I. This is the point spread function (PSF) of 
the optical system. Computing the Fourier trans-
form of the aperture is equal to evaluating the 
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Fraunhofer diffraction integral that relates the 
image space to aperture space.21 

I = fftshift(abs(fft2(B)).2)

3. �Calculate the 2D forward Fourier transform of 
the PSF, I, to create image Ip. This is called the 
optical transfer function (OTF  ).21 

Ip = abs(fftshift(fft2(I)))

4. �Create the “as-seen” image in the Fourier domain 
by multiplying the OTF by the Fourier trans-
form of the image using the Schur product. OTF 
filters the frequency content of the image (step 
1). Therefore, where OTF is 0, those frequencies 
don’t get passed by the optical system.

As_Seen_FFT = Ip. ∗ 2D_FFT_A

5. �Finally, calculate the “as-seen” image in the spa-
tial domain.

As_Seen = abs(ifft2(As_Seen_FFT ))

6. �Save the final result in a tiff file after normalizing 
its values to [0, 255] integer range.

How does the observed image compare to the 
true image in “hubble.tiff’?

Activity 4

Repeat Activities 2 and 3 with an aperture size of 
7 units and 9 units. What can you conclude about 
the quality of the observed image and the size of the 
aperture used to observe it?

Activity 5

Repeat Activities 2 and 3 with three apertures 
and then five apertures of size 5 units that form 
a Golomb pattern. In other words, matrix B will 
contain three apertures of size 5 units in the first 
experiment and five apertures of size 5 units in the 
second experiment. How does the result compare 
with that of Activity 3, in which you used only one 
aperture? What can you conclude about the quality 
of the observed image and the number of apertures 
used to observe it?

Hint: Place aperture centers on a horizontal or 
vertical line such that aperture centers form a Golomb 
ruler and apertures do not intersect with each other.

Note: Because mission expenses are driven 
by aperture cost and size, Golomb aperture pat-
terns are used to let the optical system’s OTF pass 
more nonredundant spatial frequencies with fewer 
apertures.

In this case study, we learned about Golomb rul-
ers, their properties, and applications. Golomb 

patterns have applications outside astrophysics and 
Earth sciences, however. For example, they’re used 
in coding theory to lower information transmis-
sion rate, in crystallography to position x-ray sen-
sors properly, and in sonar signal work.7,12 

Golomb sequences convey something without 
redundant patterns, but redundancy is sometimes 
needed and appreciated. Redundant patterns are 
responsible for many beautiful art masterpieces 
and breath-taking musical works. Can you imag-
ine how a song would sound without a sequence of 
repeated notes? Thanks to Golomb sequences, you 
can listen to the world’s ugliest music here: http://
tedxtalks.ted.com/video/TEDxMIAMI-Scott-
Rickard-The-Wor! 

Acknowledgments
I thank Dianne O’Leary and Matthew Bolcar for their 
careful review of this case study and helpful comments. 
This case study is dedicated to the memory of Richard G. 
Lyon (1958–2016).

References
1.	 S.A. Rinehart et al., “The Wide-Field Imaging 

Interferometry Testbed (WIIT): Recent Prog-
ress and Results,” SPIE Optical and Infrared 
Interferometry, vol. 7013, 2008; http://dx.doi.
org/10.1117/12.787402.

2.	 R.G. Lyon et al., “Wide-Field Imaging Interferom-
etry Testbed (WIIT): Image Construction Algo-
rithms,” SPIE Optical and Infrared Interferometry, 
vol. 7013, 2008; doi: 10.1117/12.789833.

3.	 J.A. Richards and X. Jia, Remote Sensing Digital 
Image Analysis: An Introduction, 4th ed., Springer, 
2005.

4.	 T.J. Cornwell, “A Novel Principle for Optimiza-
tion of the Instantaneous Fourier Plane Coverage 
of Correlation Arrays,” IEEE Trans. Antennas and 
Propagation, vol. 36, no. 8, 1988, pp. 1165–1167.

5.	 M.J.E. Golay, “Point Arrays Having Compact, 
Nonredundant Autocorrelations,” J. Optical Soc. 
Am., vol. 61, no. 2, 1971, pp. 272–273.

6.	 W.K. Klemperer, “Very Large Array Configurations 
for the Observation of Rapidly Varying Sources,” 



62	 � November/December 2016

Your Homework Assignment

Astronomy and Astrophysics Supplement, vol. 15, 
1974, pp. 449–451.

7.	 G.S. Bloom and S.W. Golomb, “Applications of 
Numbered Undirected Graphs,” Proc. IEEE, vol. 
65, no. 4, 1977, pp. 562–570.

8.	 A. Dimitromanolakis, “Analysis of the Golomb 
Ruler and the Sidon Set Problems, and Determi-
nation of Large, Near-Optimal Golomb Rulers,” 
master’s thesis, Dept. Electronic and Computer 
Eng., Tech. Univ. Crete, June 2002.

9.	 S. Sidon, “Ein satz uber trigonometrische Poly-
nome und seine Anwendungen in der Theorie der 
Fourier-Reihen,” (in German), Mathematische  
Annalen, vol. 106, 1932, pp. 536–539.

10.	 J.B. Shearer, “Some New Optimum Golomb Rect-
angles,” Electronic J. Combinatorics, vol. 2, 1995, 
article no. 12.

11.	 J.B. Shearer, “Symmetric Golomb Squares,” IEEE 
Trans. Information Theory, vol. 50, no. 8, 2004,  
pp. 1846–1847.

12.	S.W. Golomb and H. Taylor, “Construction and 
Properties of Costas Arrays,” Proc. IEEE, vol. 72, 
no. 9, 1984, pp. 1143–1154.

13.	 K. Taylor, S. Rickard, and K. Drakakis, “Costas 
Arrays: Survey, Standardization, and MATLAB 
Toolbox,” ACM Trans. Mathematical Software,  
vol. 37, no. 4, 2011, article no. 41.

14.	 S. Blackburn et al., “Honeycomb Arrays,” Electron-
ic J. Combinatorics, vol. 17, 2010; www.combinator-
ics.org/ojs/index.php/eljc/article/view/v17i1r172.

15.	 P. Hansen, B. Jaumard, and C. Meyer, “On Lower 
Bounds for Numbered Complete Graphs,” Discrete 

Applied Mathematics, vol. 94, no. 3, 1999,  
pp. 205–225.

16.	 C. Meyer and B. Jaumard, “Equivalence of Some 
LP-Based Lower Bounds for the Golomb Ruler 
Problem,” Discrete Applied Mathematics, vol. 154, 
no. 1, 2006, pp. 120–144.

17.	 S.W. Soliday, A. Homaifar, and G.L. Lebby, 
“Genetic Algorithm Approach to the Search for 
Golomb Rulers,” Proc. 6th Int’ l Conf. Genetic Algo-
rithms, 1995, pp. 528–535.

18.	 P. Erdös, “On a Problem of Sidon in Additive 
Number Theory, and on Some Related Problems 
Addendum,” J. London Mathematical Soc., vol. 19, 
1944, p. 208.

19.	 P. Erdös and P. Turán, “On a Problem of Sidon in 
Additive Number Theory, and on Some Related 
Problems,” J. London Mathematical Soc., vol. 16, 
1941, pp. 212–215.

20.	K. Drakakis, “A Review of the Available Con-
struction Methods for Golomb Rulers,” Advances 
in Mathematics of Communications, vol. 3, no. 3, 
2009, pp. 235–250.

21.	 J. Goodman, Introduction to Fourier Optics, 3rd ed., 
Roberts & Company Publishers, 2005.

Nargess Memarsadeghi is a senior computer engineer 
at NASA Goddard Space Flight Center. Her research 
interests include scientific computing, image processing, 
and optimization algorithms. Memarsadeghi received a 
PhD in computer science from the University of Mary-
land at College Park. Contact her at Nargess.Memarsa-
deghi@nasa.gov.

The American Institute of Physics is an organization 
of scientific societies in the physical sciences, 
representing scientists, engineers, and educators. AIP 
offers authoritative information, services, and expertise 
in physics education and student programs, science 
communication, government relations, career services 

for science and engineering professionals, statistical 
research in physics employment and education, 
industrial outreach, and the history of physics and 
allied fields. AIP publishes PHYSICS TODAY, the most 
closely followed magazine of the physical sciences 
community, and is also home to the Society of Physics 
Students and the Niels Bohr Library and Archives. AIP 
owns AIP Publishing LLC, a scholarly publisher in the 
physical and related sciences.

Board of Directors: Louis J. Lanzerotti (Chair), Robert 
G. W. Brown (CEO), Judith L. Flippen-Anderson 
(Corporate Secretary), J. Daniel Bourland, Charles 
Carter, Beth Cunningham, Robert Doering, Judy 
Dubno, Michael D. Duncan, David Ernst, Kate Kirby, 
Rudolf Ludeke, Kevin B. Marvel, Faith Morrison, Dian 
Seidel.


